Metamath Proof Explorer


Theorem elnnnn0b

Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005)

Ref Expression
Assertion elnnnn0b N N 0 0 < N

Proof

Step Hyp Ref Expression
1 nnnn0 N N 0
2 nngt0 N 0 < N
3 1 2 jca N N 0 0 < N
4 elnn0 N 0 N N = 0
5 breq2 N = 0 0 < N 0 < 0
6 0re 0
7 6 ltnri ¬ 0 < 0
8 7 pm2.21i 0 < 0 N
9 5 8 syl6bi N = 0 0 < N N
10 9 jao1i N N = 0 0 < N N
11 4 10 sylbi N 0 0 < N N
12 11 imp N 0 0 < N N
13 3 12 impbii N N 0 0 < N