Metamath Proof Explorer


Theorem elnnz1

Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion elnnz1 N N 1 N

Proof

Step Hyp Ref Expression
1 nnz N N
2 nnge1 N 1 N
3 1 2 jca N N 1 N
4 0lt1 0 < 1
5 0re 0
6 1re 1
7 zre N N
8 ltletr 0 1 N 0 < 1 1 N 0 < N
9 5 6 7 8 mp3an12i N 0 < 1 1 N 0 < N
10 4 9 mpani N 1 N 0 < N
11 10 imdistani N 1 N N 0 < N
12 elnnz N N 0 < N
13 11 12 sylibr N 1 N N
14 3 13 impbii N N 1 N