Metamath Proof Explorer


Theorem elno

Description: Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011) (Proof shortened by SF, 14-Apr-2012) Avoid ax-rep . (Revised by SN, 5-Jun-2025)

Ref Expression
Assertion elno A No x On A : x 1 𝑜 2 𝑜

Proof

Step Hyp Ref Expression
1 elex A No A V
2 vex x V
3 prex 1 𝑜 2 𝑜 V
4 fex2 A : x 1 𝑜 2 𝑜 x V 1 𝑜 2 𝑜 V A V
5 2 3 4 mp3an23 A : x 1 𝑜 2 𝑜 A V
6 5 rexlimivw x On A : x 1 𝑜 2 𝑜 A V
7 feq1 f = A f : x 1 𝑜 2 𝑜 A : x 1 𝑜 2 𝑜
8 7 rexbidv f = A x On f : x 1 𝑜 2 𝑜 x On A : x 1 𝑜 2 𝑜
9 df-no No = f | x On f : x 1 𝑜 2 𝑜
10 8 9 elab2g A V A No x On A : x 1 𝑜 2 𝑜
11 1 6 10 pm5.21nii A No x On A : x 1 𝑜 2 𝑜