Metamath Proof Explorer


Theorem elo1

Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion elo1 F 𝑂1 F 𝑝𝑚 x m y dom F x +∞ F y m

Proof

Step Hyp Ref Expression
1 dmeq f = F dom f = dom F
2 1 ineq1d f = F dom f x +∞ = dom F x +∞
3 fveq1 f = F f y = F y
4 3 fveq2d f = F f y = F y
5 4 breq1d f = F f y m F y m
6 2 5 raleqbidv f = F y dom f x +∞ f y m y dom F x +∞ F y m
7 6 2rexbidv f = F x m y dom f x +∞ f y m x m y dom F x +∞ F y m
8 df-o1 𝑂1 = f 𝑝𝑚 | x m y dom f x +∞ f y m
9 7 8 elrab2 F 𝑂1 F 𝑝𝑚 x m y dom F x +∞ F y m