Metamath Proof Explorer


Theorem elo12r

Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion elo12r F : A A C M x A C x F x M F 𝑂1

Proof

Step Hyp Ref Expression
1 breq1 y = C y x C x
2 1 imbi1d y = C y x F x m C x F x m
3 2 ralbidv y = C x A y x F x m x A C x F x m
4 breq2 m = M F x m F x M
5 4 imbi2d m = M C x F x m C x F x M
6 5 ralbidv m = M x A C x F x m x A C x F x M
7 3 6 rspc2ev C M x A C x F x M y m x A y x F x m
8 7 3expa C M x A C x F x M y m x A y x F x m
9 8 3adant1 F : A A C M x A C x F x M y m x A y x F x m
10 elo12 F : A A F 𝑂1 y m x A y x F x m
11 10 3ad2ant1 F : A A C M x A C x F x M F 𝑂1 y m x A y x F x m
12 9 11 mpbird F : A A C M x A C x F x M F 𝑂1