Metamath Proof Explorer


Theorem elo1d

Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses elo1mpt.1 φ A
elo1mpt.2 φ x A B
elo1d.3 φ C
elo1d.4 φ M
elo1d.5 φ x A C x B M
Assertion elo1d φ x A B 𝑂1

Proof

Step Hyp Ref Expression
1 elo1mpt.1 φ A
2 elo1mpt.2 φ x A B
3 elo1d.3 φ C
4 elo1d.4 φ M
5 elo1d.5 φ x A C x B M
6 2 abscld φ x A B
7 1 6 3 4 5 ello1d φ x A B 𝑂1
8 2 lo1o12 φ x A B 𝑂1 x A B 𝑂1
9 7 8 mpbird φ x A B 𝑂1