Metamath Proof Explorer


Theorem elo1mpt2

Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 12-May-2016) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses elo1mpt.1 φ A
elo1mpt.2 φ x A B
elo1d.3 φ C
Assertion elo1mpt2 φ x A B 𝑂1 y C +∞ m x A y x B m

Proof

Step Hyp Ref Expression
1 elo1mpt.1 φ A
2 elo1mpt.2 φ x A B
3 elo1d.3 φ C
4 2 lo1o12 φ x A B 𝑂1 x A B 𝑂1
5 2 abscld φ x A B
6 1 5 3 ello1mpt2 φ x A B 𝑂1 y C +∞ m x A y x B m
7 4 6 bitrd φ x A B 𝑂1 y C +∞ m x A y x B m