Metamath Proof Explorer


Theorem elold

Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion elold AOnXOldAbAXMb

Proof

Step Hyp Ref Expression
1 oldval AOnOldA=MA
2 1 eleq2d AOnXOldAXMA
3 eluni XMAyXyyMA
4 madef M:On𝒫No
5 ffn M:On𝒫NoMFnOn
6 4 5 ax-mp MFnOn
7 onss AOnAOn
8 fvelimab MFnOnAOnyMAbAMb=y
9 6 7 8 sylancr AOnyMAbAMb=y
10 9 anbi2d AOnXyyMAXybAMb=y
11 10 exbidv AOnyXyyMAyXybAMb=y
12 fvex MbV
13 12 clel3 XMbyy=MbXy
14 13 rexbii bAXMbbAyy=MbXy
15 rexcom4 bAyy=MbXyybAy=MbXy
16 eqcom y=MbMb=y
17 16 anbi2ci y=MbXyXyMb=y
18 17 rexbii bAy=MbXybAXyMb=y
19 r19.42v bAXyMb=yXybAMb=y
20 18 19 bitri bAy=MbXyXybAMb=y
21 20 exbii ybAy=MbXyyXybAMb=y
22 14 15 21 3bitrri yXybAMb=ybAXMb
23 11 22 bitrdi AOnyXyyMAbAXMb
24 3 23 bitrid AOnXMAbAXMb
25 2 24 bitrd AOnXOldAbAXMb