Metamath Proof Explorer


Theorem elom

Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 . (Contributed by NM, 15-May-1994)

Ref Expression
Assertion elom A ω A On x Lim x A x

Proof

Step Hyp Ref Expression
1 eleq1 y = A y x A x
2 1 imbi2d y = A Lim x y x Lim x A x
3 2 albidv y = A x Lim x y x x Lim x A x
4 df-om ω = y On | x Lim x y x
5 3 4 elrab2 A ω A On x Lim x A x