Metamath Proof Explorer


Theorem elom3

Description: A simplification of elom assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003)

Ref Expression
Assertion elom3 A ω x Lim x A x

Proof

Step Hyp Ref Expression
1 elom A ω A On x Lim x A x
2 limom Lim ω
3 omex ω V
4 limeq x = ω Lim x Lim ω
5 eleq2 x = ω A x A ω
6 4 5 imbi12d x = ω Lim x A x Lim ω A ω
7 3 6 spcv x Lim x A x Lim ω A ω
8 2 7 mpi x Lim x A x A ω
9 nnon A ω A On
10 8 9 syl x Lim x A x A On
11 10 pm4.71ri x Lim x A x A On x Lim x A x
12 1 11 bitr4i A ω x Lim x A x