Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordered-pair class abstractions (cont.)
elopab
Next ⟩
rexopabb
Metamath Proof Explorer
Ascii
Unicode
Theorem
elopab
Description:
Membership in a class abstraction of ordered pairs.
(Contributed by
NM
, 24-Mar-1998)
Ref
Expression
Assertion
elopab
⊢
A
∈
x
y
|
φ
↔
∃
x
∃
y
A
=
x
y
∧
φ
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
x
y
|
φ
→
A
∈
V
2
opex
⊢
x
y
∈
V
3
eleq1
⊢
A
=
x
y
→
A
∈
V
↔
x
y
∈
V
4
2
3
mpbiri
⊢
A
=
x
y
→
A
∈
V
5
4
adantr
⊢
A
=
x
y
∧
φ
→
A
∈
V
6
5
exlimivv
⊢
∃
x
∃
y
A
=
x
y
∧
φ
→
A
∈
V
7
eqeq1
⊢
z
=
A
→
z
=
x
y
↔
A
=
x
y
8
7
anbi1d
⊢
z
=
A
→
z
=
x
y
∧
φ
↔
A
=
x
y
∧
φ
9
8
2exbidv
⊢
z
=
A
→
∃
x
∃
y
z
=
x
y
∧
φ
↔
∃
x
∃
y
A
=
x
y
∧
φ
10
df-opab
⊢
x
y
|
φ
=
z
|
∃
x
∃
y
z
=
x
y
∧
φ
11
9
10
elab2g
⊢
A
∈
V
→
A
∈
x
y
|
φ
↔
∃
x
∃
y
A
=
x
y
∧
φ
12
1
6
11
pm5.21nii
⊢
A
∈
x
y
|
φ
↔
∃
x
∃
y
A
=
x
y
∧
φ