Metamath Proof Explorer


Theorem elopaba

Description: Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis copsex2ga.1 A = x y φ ψ
Assertion elopaba A x y | ψ A V × V φ

Proof

Step Hyp Ref Expression
1 copsex2ga.1 A = x y φ ψ
2 elopab A x y | ψ x y A = x y ψ
3 1 copsex2gb x y A = x y ψ A V × V φ
4 2 3 bitri A x y | ψ A V × V φ