Metamath Proof Explorer
Description: Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 31-Aug-2015)
|
|
Ref |
Expression |
|
Hypothesis |
copsex2ga.1 |
|
|
Assertion |
elopaba |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
copsex2ga.1 |
|
2 |
|
elopab |
|
3 |
1
|
copsex2gb |
|
4 |
2 3
|
bitri |
|