Metamath Proof Explorer


Theorem elopabi

Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypotheses elopabi.1 x = 1 st A φ ψ
elopabi.2 y = 2 nd A ψ χ
Assertion elopabi A x y | φ χ

Proof

Step Hyp Ref Expression
1 elopabi.1 x = 1 st A φ ψ
2 elopabi.2 y = 2 nd A ψ χ
3 relopabv Rel x y | φ
4 1st2nd Rel x y | φ A x y | φ A = 1 st A 2 nd A
5 3 4 mpan A x y | φ A = 1 st A 2 nd A
6 id A x y | φ A x y | φ
7 5 6 eqeltrrd A x y | φ 1 st A 2 nd A x y | φ
8 fvex 1 st A V
9 fvex 2 nd A V
10 8 9 1 2 opelopab 1 st A 2 nd A x y | φ χ
11 7 10 sylib A x y | φ χ