Metamath Proof Explorer


Theorem elopaelxp

Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018)

Ref Expression
Assertion elopaelxp A x y | ψ A V × V

Proof

Step Hyp Ref Expression
1 simpl A = x y ψ A = x y
2 1 2eximi x y A = x y ψ x y A = x y
3 elopab A x y | ψ x y A = x y ψ
4 elvv A V × V x y A = x y
5 2 3 4 3imtr4i A x y | ψ A V × V