Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
eloprabg
Metamath Proof Explorer
Description: The law of concretion for operation class abstraction. Compare
elopab . (Contributed by NM , 14-Sep-1999) (Revised by David
Abernethy , 19-Jun-2012)
Ref
Expression
Hypotheses
eloprabg.1
⊢ x = A → φ ↔ ψ
eloprabg.2
⊢ y = B → ψ ↔ χ
eloprabg.3
⊢ z = C → χ ↔ θ
Assertion
eloprabg
⊢ A ∈ V ∧ B ∈ W ∧ C ∈ X → A B C ∈ x y z | φ ↔ θ
Proof
Step
Hyp
Ref
Expression
1
eloprabg.1
⊢ x = A → φ ↔ ψ
2
eloprabg.2
⊢ y = B → ψ ↔ χ
3
eloprabg.3
⊢ z = C → χ ↔ θ
4
1 2 3
syl3an9b
⊢ x = A ∧ y = B ∧ z = C → φ ↔ θ
5
4
eloprabga
⊢ A ∈ V ∧ B ∈ W ∧ C ∈ X → A B C ∈ x y z | φ ↔ θ