Metamath Proof Explorer


Theorem eloprabg

Description: The law of concretion for operation class abstraction. Compare elopab . (Contributed by NM, 14-Sep-1999) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses eloprabg.1 x = A φ ψ
eloprabg.2 y = B ψ χ
eloprabg.3 z = C χ θ
Assertion eloprabg A V B W C X A B C x y z | φ θ

Proof

Step Hyp Ref Expression
1 eloprabg.1 x = A φ ψ
2 eloprabg.2 y = B ψ χ
3 eloprabg.3 z = C χ θ
4 1 2 3 syl3an9b x = A y = B z = C φ θ
5 4 eloprabga A V B W C X A B C x y z | φ θ