Metamath Proof Explorer


Theorem elovmpo

Description: Utility lemma for two-parameter classes.

EDITORIAL: can simplify isghm , islmhm . (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses elovmpo.d D = a A , b B C
elovmpo.c C V
elovmpo.e a = X b = Y C = E
Assertion elovmpo F X D Y X A Y B F E

Proof

Step Hyp Ref Expression
1 elovmpo.d D = a A , b B C
2 elovmpo.c C V
3 elovmpo.e a = X b = Y C = E
4 1 elmpocl F X D Y X A Y B
5 2 gen2 a b C V
6 3 eleq1d a = X b = Y C V E V
7 6 spc2gv X A Y B a b C V E V
8 5 7 mpi X A Y B E V
9 3 1 ovmpoga X A Y B E V X D Y = E
10 8 9 mpd3an3 X A Y B X D Y = E
11 10 eleq2d X A Y B F X D Y F E
12 4 11 biadanii F X D Y X A Y B F E
13 df-3an X A Y B F E X A Y B F E
14 12 13 bitr4i F X D Y X A Y B F E