Metamath Proof Explorer


Theorem elovmpod

Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015) Variant of elovmpo in deduction form. (Revised by AV, 20-Apr-2025)

Ref Expression
Hypotheses elovmpod.o O = a A , b B C
elovmpod.x φ X A
elovmpod.y φ Y B
elovmpod.d φ D V
elovmpod.c a = X b = Y C = D
Assertion elovmpod φ E X O Y E D

Proof

Step Hyp Ref Expression
1 elovmpod.o O = a A , b B C
2 elovmpod.x φ X A
3 elovmpod.y φ Y B
4 elovmpod.d φ D V
5 elovmpod.c a = X b = Y C = D
6 1 a1i φ O = a A , b B C
7 5 adantl φ a = X b = Y C = D
8 6 7 2 3 4 ovmpod φ X O Y = D
9 8 eleq2d φ E X O Y E D