Metamath Proof Explorer


Theorem elovmporab

Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018)

Ref Expression
Hypotheses elovmporab.o O=xV,yVzM|φ
elovmporab.v XVYVMV
Assertion elovmporab ZXOYXVYVZM

Proof

Step Hyp Ref Expression
1 elovmporab.o O=xV,yVzM|φ
2 elovmporab.v XVYVMV
3 1 elmpocl ZXOYXVYV
4 1 a1i XVYVO=xV,yVzM|φ
5 sbceq1a y=Yφ[˙Y/y]˙φ
6 sbceq1a x=X[˙Y/y]˙φ[˙X/x]˙[˙Y/y]˙φ
7 5 6 sylan9bbr x=Xy=Yφ[˙X/x]˙[˙Y/y]˙φ
8 7 adantl XVYVx=Xy=Yφ[˙X/x]˙[˙Y/y]˙φ
9 8 rabbidv XVYVx=Xy=YzM|φ=zM|[˙X/x]˙[˙Y/y]˙φ
10 eqidd XVYVx=XV=V
11 simpl XVYVXV
12 simpr XVYVYV
13 rabexg MVzM|[˙X/x]˙[˙Y/y]˙φV
14 2 13 syl XVYVzM|[˙X/x]˙[˙Y/y]˙φV
15 nfcv _xX
16 15 nfel1 xXV
17 nfcv _xY
18 17 nfel1 xYV
19 16 18 nfan xXVYV
20 nfcv _yX
21 20 nfel1 yXV
22 nfcv _yY
23 22 nfel1 yYV
24 21 23 nfan yXVYV
25 nfsbc1v x[˙X/x]˙[˙Y/y]˙φ
26 nfcv _xM
27 25 26 nfrabw _xzM|[˙X/x]˙[˙Y/y]˙φ
28 nfsbc1v y[˙Y/y]˙φ
29 20 28 nfsbcw y[˙X/x]˙[˙Y/y]˙φ
30 nfcv _yM
31 29 30 nfrabw _yzM|[˙X/x]˙[˙Y/y]˙φ
32 4 9 10 11 12 14 19 24 20 17 27 31 ovmpodxf XVYVXOY=zM|[˙X/x]˙[˙Y/y]˙φ
33 32 eleq2d XVYVZXOYZzM|[˙X/x]˙[˙Y/y]˙φ
34 df-3an XVYVZMXVYVZM
35 34 simplbi2com ZMXVYVXVYVZM
36 elrabi ZzM|[˙X/x]˙[˙Y/y]˙φZM
37 35 36 syl11 XVYVZzM|[˙X/x]˙[˙Y/y]˙φXVYVZM
38 33 37 sylbid XVYVZXOYXVYVZM
39 3 38 mpcom ZXOYXVYVZM