Metamath Proof Explorer


Theorem elovmpowrd

Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that ph may depend on z as well as on v and y . (Contributed by Alexander van der Vekens, 15-Jul-2018)

Ref Expression
Hypothesis elovmpowrd.o O = v V , y V z Word v | φ
Assertion elovmpowrd Z V O Y V V Y V Z Word V

Proof

Step Hyp Ref Expression
1 elovmpowrd.o O = v V , y V z Word v | φ
2 csbwrdg v V v / x Word x = Word v
3 2 eqcomd v V Word v = v / x Word x
4 3 adantr v V y V Word v = v / x Word x
5 4 rabeqdv v V y V z Word v | φ = z v / x Word x | φ
6 5 mpoeq3ia v V , y V z Word v | φ = v V , y V z v / x Word x | φ
7 1 6 eqtri O = v V , y V z v / x Word x | φ
8 csbwrdg V V V / x Word x = Word V
9 wrdexg V V Word V V
10 8 9 eqeltrd V V V / x Word x V
11 10 adantr V V Y V V / x Word x V
12 7 11 elovmporab1w Z V O Y V V Y V Z V / x Word x
13 8 eleq2d V V Z V / x Word x Z Word V
14 13 adantr V V Y V Z V / x Word x Z Word V
15 id V V Y V Z Word V V V Y V Z Word V
16 15 3expia V V Y V Z Word V V V Y V Z Word V
17 14 16 sylbid V V Y V Z V / x Word x V V Y V Z Word V
18 17 3impia V V Y V Z V / x Word x V V Y V Z Word V
19 12 18 syl Z V O Y V V Y V Z Word V