Metamath Proof Explorer


Theorem elovmpt3imp

Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands must be sets. Remark: a function which is the result of an operation can be regared as operation with 3 operands - therefore the abbreviation "mpt3" is used in the label. (Contributed by AV, 16-May-2019)

Ref Expression
Hypothesis elovmpt3imp.o O = x V , y V z M B
Assertion elovmpt3imp A X O Y Z X V Y V

Proof

Step Hyp Ref Expression
1 elovmpt3imp.o O = x V , y V z M B
2 ne0i A X O Y Z X O Y Z
3 ax-1 X V Y V X O Y Z X V Y V
4 1 mpondm0 ¬ X V Y V X O Y =
5 fveq1 X O Y = X O Y Z = Z
6 0fv Z =
7 5 6 eqtrdi X O Y = X O Y Z =
8 eqneqall X O Y Z = X O Y Z X V Y V
9 4 7 8 3syl ¬ X V Y V X O Y Z X V Y V
10 3 9 pm2.61i X O Y Z X V Y V
11 2 10 syl A X O Y Z X V Y V