Metamath Proof Explorer


Theorem elovmpt3rab

Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by AV, 17-Jul-2018) (Revised by AV, 16-May-2019)

Ref Expression
Hypothesis elovmpt3rab.o O = x V , y V z M a N | φ
Assertion elovmpt3rab M U N T A X O Y Z X V Y V Z M A N

Proof

Step Hyp Ref Expression
1 elovmpt3rab.o O = x V , y V z M a N | φ
2 eqidd x = X y = Y M = M
3 eqidd x = X y = Y N = N
4 1 2 3 elovmpt3rab1 M U N T A X O Y Z X V Y V Z M A N