Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpt3rab1.o |
|
2 |
|
ovmpt3rab1.m |
|
3 |
|
ovmpt3rab1.n |
|
4 |
1
|
elovmpt3imp |
|
5 |
|
simprl |
|
6 |
|
elfvdm |
|
7 |
|
simpl |
|
8 |
7
|
adantr |
|
9 |
|
simplr |
|
10 |
|
simprl |
|
11 |
|
simprr |
|
12 |
1 2 3
|
ovmpt3rabdm |
|
13 |
8 9 10 11 12
|
syl31anc |
|
14 |
13
|
eleq2d |
|
15 |
14
|
biimpcd |
|
16 |
15
|
adantr |
|
17 |
16
|
imp |
|
18 |
|
simpl |
|
19 |
|
simplr |
|
20 |
19
|
adantl |
|
21 |
|
simpl |
|
22 |
21
|
anim2i |
|
23 |
|
df-3an |
|
24 |
22 23
|
sylibr |
|
25 |
24
|
ad2antll |
|
26 |
|
sbceq1a |
|
27 |
|
sbceq1a |
|
28 |
26 27
|
sylan9bbr |
|
29 |
|
nfsbc1v |
|
30 |
|
nfcv |
|
31 |
|
nfsbc1v |
|
32 |
30 31
|
nfsbcw |
|
33 |
1 2 3 28 29 32
|
ovmpt3rab1 |
|
34 |
33
|
fveq1d |
|
35 |
25 34
|
syl |
|
36 |
|
rabexg |
|
37 |
36
|
adantl |
|
38 |
37
|
ad2antll |
|
39 |
|
nfcv |
|
40 |
|
nfsbc1v |
|
41 |
|
nfcv |
|
42 |
40 41
|
nfrabw |
|
43 |
|
sbceq1a |
|
44 |
43
|
rabbidv |
|
45 |
|
eqid |
|
46 |
39 42 44 45
|
fvmptf |
|
47 |
38 46
|
sylan2 |
|
48 |
35 47
|
eqtr2d |
|
49 |
20 48
|
eleqtrrd |
|
50 |
|
elrabi |
|
51 |
49 50
|
syl |
|
52 |
18 51
|
jca |
|
53 |
17 52
|
mpancom |
|
54 |
53
|
exp31 |
|
55 |
6 54
|
mpcom |
|
56 |
55
|
imp |
|
57 |
5 56
|
jca |
|
58 |
57
|
exp32 |
|
59 |
4 58
|
mpd |
|
60 |
59
|
com12 |
|