Metamath Proof Explorer


Theorem elovmptnn0wrd

Description: Implications for the value of an operation defined by the maps-to notation with a function of nonnegative integers into a class abstraction of words as a result having an element. Note that ph may depend on z as well as on v and y and n . (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)

Ref Expression
Hypothesis elovmptnn0wrd.o O = v V , y V n 0 z Word v | φ
Assertion elovmptnn0wrd Z V O Y N V V Y V N 0 Z Word V

Proof

Step Hyp Ref Expression
1 elovmptnn0wrd.o O = v V , y V n 0 z Word v | φ
2 1 elovmpt3imp Z V O Y N V V Y V
3 wrdexg V V Word V V
4 3 adantr V V Y V Word V V
5 2 4 syl Z V O Y N Word V V
6 nn0ex 0 V
7 5 6 jctil Z V O Y N 0 V Word V V
8 eqidd v = V y = Y 0 = 0
9 wrdeq v = V Word v = Word V
10 9 adantr v = V y = Y Word v = Word V
11 1 8 10 elovmpt3rab1 0 V Word V V Z V O Y N V V Y V N 0 Z Word V
12 7 11 mpcom Z V O Y N V V Y V N 0 Z Word V