Metamath Proof Explorer


Theorem elovolm

Description: Elementhood in the set M of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Hypothesis elovolm.1 M = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
Assertion elovolm B M f 2 A ran . f B = sup ran seq 1 + abs f * <

Proof

Step Hyp Ref Expression
1 elovolm.1 M = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
2 eqeq1 y = B y = sup ran seq 1 + abs f * < B = sup ran seq 1 + abs f * <
3 2 anbi2d y = B A ran . f y = sup ran seq 1 + abs f * < A ran . f B = sup ran seq 1 + abs f * <
4 3 rexbidv y = B f 2 A ran . f y = sup ran seq 1 + abs f * < f 2 A ran . f B = sup ran seq 1 + abs f * <
5 4 1 elrab2 B M B * f 2 A ran . f B = sup ran seq 1 + abs f * <
6 elovolmlem f 2 f : 2
7 eqid abs f = abs f
8 eqid seq 1 + abs f = seq 1 + abs f
9 7 8 ovolsf f : 2 seq 1 + abs f : 0 +∞
10 6 9 sylbi f 2 seq 1 + abs f : 0 +∞
11 icossxr 0 +∞ *
12 fss seq 1 + abs f : 0 +∞ 0 +∞ * seq 1 + abs f : *
13 10 11 12 sylancl f 2 seq 1 + abs f : *
14 frn seq 1 + abs f : * ran seq 1 + abs f *
15 supxrcl ran seq 1 + abs f * sup ran seq 1 + abs f * < *
16 13 14 15 3syl f 2 sup ran seq 1 + abs f * < *
17 eleq1 B = sup ran seq 1 + abs f * < B * sup ran seq 1 + abs f * < *
18 16 17 syl5ibrcom f 2 B = sup ran seq 1 + abs f * < B *
19 18 imp f 2 B = sup ran seq 1 + abs f * < B *
20 19 adantrl f 2 A ran . f B = sup ran seq 1 + abs f * < B *
21 20 rexlimiva f 2 A ran . f B = sup ran seq 1 + abs f * < B *
22 21 pm4.71ri f 2 A ran . f B = sup ran seq 1 + abs f * < B * f 2 A ran . f B = sup ran seq 1 + abs f * <
23 5 22 bitr4i B M f 2 A ran . f B = sup ran seq 1 + abs f * <