Metamath Proof Explorer


Theorem elpadd2at

Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012)

Ref Expression
Hypotheses paddfval.l ˙ = K
paddfval.j ˙ = join K
paddfval.a A = Atoms K
paddfval.p + ˙ = + 𝑃 K
Assertion elpadd2at K Lat Q A R A S Q + ˙ R S A S ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 paddfval.l ˙ = K
2 paddfval.j ˙ = join K
3 paddfval.a A = Atoms K
4 paddfval.p + ˙ = + 𝑃 K
5 simp1 K Lat Q A R A K Lat
6 simp2 K Lat Q A R A Q A
7 6 snssd K Lat Q A R A Q A
8 simp3 K Lat Q A R A R A
9 snnzg Q A Q
10 9 3ad2ant2 K Lat Q A R A Q
11 1 2 3 4 elpaddat K Lat Q A R A Q S Q + ˙ R S A r Q S ˙ r ˙ R
12 5 7 8 10 11 syl31anc K Lat Q A R A S Q + ˙ R S A r Q S ˙ r ˙ R
13 oveq1 r = Q r ˙ R = Q ˙ R
14 13 breq2d r = Q S ˙ r ˙ R S ˙ Q ˙ R
15 14 rexsng Q A r Q S ˙ r ˙ R S ˙ Q ˙ R
16 15 3ad2ant2 K Lat Q A R A r Q S ˙ r ˙ R S ˙ Q ˙ R
17 16 anbi2d K Lat Q A R A S A r Q S ˙ r ˙ R S A S ˙ Q ˙ R
18 12 17 bitrd K Lat Q A R A S Q + ˙ R S A S ˙ Q ˙ R