Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
elpadd2at2
Next ⟩
paddunssN
Metamath Proof Explorer
Ascii
Unicode
Theorem
elpadd2at2
Description:
Membership in a projective subspace sum of two points.
(Contributed by
NM
, 8-Mar-2012)
Ref
Expression
Hypotheses
paddfval.l
⊢
≤
˙
=
≤
K
paddfval.j
⊢
∨
˙
=
join
⁡
K
paddfval.a
⊢
A
=
Atoms
⁡
K
paddfval.p
⊢
+
˙
=
+
𝑃
⁡
K
Assertion
elpadd2at2
⊢
K
∈
Lat
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
S
∈
Q
+
˙
R
↔
S
≤
˙
Q
∨
˙
R
Proof
Step
Hyp
Ref
Expression
1
paddfval.l
⊢
≤
˙
=
≤
K
2
paddfval.j
⊢
∨
˙
=
join
⁡
K
3
paddfval.a
⊢
A
=
Atoms
⁡
K
4
paddfval.p
⊢
+
˙
=
+
𝑃
⁡
K
5
1
2
3
4
elpadd2at
⊢
K
∈
Lat
∧
Q
∈
A
∧
R
∈
A
→
S
∈
Q
+
˙
R
↔
S
∈
A
∧
S
≤
˙
Q
∨
˙
R
6
5
3adant3r3
⊢
K
∈
Lat
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
S
∈
Q
+
˙
R
↔
S
∈
A
∧
S
≤
˙
Q
∨
˙
R
7
simpr3
⊢
K
∈
Lat
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
S
∈
A
8
7
biantrurd
⊢
K
∈
Lat
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
S
≤
˙
Q
∨
˙
R
↔
S
∈
A
∧
S
≤
˙
Q
∨
˙
R
9
6
8
bitr4d
⊢
K
∈
Lat
∧
Q
∈
A
∧
R
∈
A
∧
S
∈
A
→
S
∈
Q
+
˙
R
↔
S
≤
˙
Q
∨
˙
R