Metamath Proof Explorer


Theorem elpadd2at2

Description: Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012)

Ref Expression
Hypotheses paddfval.l ˙ = K
paddfval.j ˙ = join K
paddfval.a A = Atoms K
paddfval.p + ˙ = + 𝑃 K
Assertion elpadd2at2 K Lat Q A R A S A S Q + ˙ R S ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 paddfval.l ˙ = K
2 paddfval.j ˙ = join K
3 paddfval.a A = Atoms K
4 paddfval.p + ˙ = + 𝑃 K
5 1 2 3 4 elpadd2at K Lat Q A R A S Q + ˙ R S A S ˙ Q ˙ R
6 5 3adant3r3 K Lat Q A R A S A S Q + ˙ R S A S ˙ Q ˙ R
7 simpr3 K Lat Q A R A S A S A
8 7 biantrurd K Lat Q A R A S A S ˙ Q ˙ R S A S ˙ Q ˙ R
9 6 8 bitr4d K Lat Q A R A S A S Q + ˙ R S ˙ Q ˙ R