Metamath Proof Explorer


Theorem elpaddat

Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012)

Ref Expression
Hypotheses paddfval.l ˙ = K
paddfval.j ˙ = join K
paddfval.a A = Atoms K
paddfval.p + ˙ = + 𝑃 K
Assertion elpaddat K Lat X A Q A X S X + ˙ Q S A p X S ˙ p ˙ Q

Proof

Step Hyp Ref Expression
1 paddfval.l ˙ = K
2 paddfval.j ˙ = join K
3 paddfval.a A = Atoms K
4 paddfval.p + ˙ = + 𝑃 K
5 simpl1 K Lat X A Q A X K Lat
6 simpl2 K Lat X A Q A X X A
7 simpl3 K Lat X A Q A X Q A
8 7 snssd K Lat X A Q A X Q A
9 simpr K Lat X A Q A X X
10 7 snn0d K Lat X A Q A X Q
11 1 2 3 4 elpaddn0 K Lat X A Q A X Q S X + ˙ Q S A p X r Q S ˙ p ˙ r
12 5 6 8 9 10 11 syl32anc K Lat X A Q A X S X + ˙ Q S A p X r Q S ˙ p ˙ r
13 oveq2 r = Q p ˙ r = p ˙ Q
14 13 breq2d r = Q S ˙ p ˙ r S ˙ p ˙ Q
15 14 rexsng Q A r Q S ˙ p ˙ r S ˙ p ˙ Q
16 7 15 syl K Lat X A Q A X r Q S ˙ p ˙ r S ˙ p ˙ Q
17 16 rexbidv K Lat X A Q A X p X r Q S ˙ p ˙ r p X S ˙ p ˙ Q
18 17 anbi2d K Lat X A Q A X S A p X r Q S ˙ p ˙ r S A p X S ˙ p ˙ Q
19 12 18 bitrd K Lat X A Q A X S X + ˙ Q S A p X S ˙ p ˙ Q