Metamath Proof Explorer


Theorem elpaddatiN

Description: Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddfval.l ˙ = K
paddfval.j ˙ = join K
paddfval.a A = Atoms K
paddfval.p + ˙ = + 𝑃 K
Assertion elpaddatiN K Lat X A Q A X R X + ˙ Q p X R ˙ p ˙ Q

Proof

Step Hyp Ref Expression
1 paddfval.l ˙ = K
2 paddfval.j ˙ = join K
3 paddfval.a A = Atoms K
4 paddfval.p + ˙ = + 𝑃 K
5 1 2 3 4 elpaddat K Lat X A Q A X R X + ˙ Q R A p X R ˙ p ˙ Q
6 simpr R A p X R ˙ p ˙ Q p X R ˙ p ˙ Q
7 5 6 syl6bi K Lat X A Q A X R X + ˙ Q p X R ˙ p ˙ Q
8 7 impr K Lat X A Q A X R X + ˙ Q p X R ˙ p ˙ Q