Metamath Proof Explorer


Theorem elpaddatriN

Description: Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddfval.l ˙ = K
paddfval.j ˙ = join K
paddfval.a A = Atoms K
paddfval.p + ˙ = + 𝑃 K
Assertion elpaddatriN K Lat X A Q A R X S A S ˙ R ˙ Q S X + ˙ Q

Proof

Step Hyp Ref Expression
1 paddfval.l ˙ = K
2 paddfval.j ˙ = join K
3 paddfval.a A = Atoms K
4 paddfval.p + ˙ = + 𝑃 K
5 simpl1 K Lat X A Q A R X S A S ˙ R ˙ Q K Lat
6 simpl2 K Lat X A Q A R X S A S ˙ R ˙ Q X A
7 simpl3 K Lat X A Q A R X S A S ˙ R ˙ Q Q A
8 7 snssd K Lat X A Q A R X S A S ˙ R ˙ Q Q A
9 simpr1 K Lat X A Q A R X S A S ˙ R ˙ Q R X
10 snidg Q A Q Q
11 7 10 syl K Lat X A Q A R X S A S ˙ R ˙ Q Q Q
12 simpr2 K Lat X A Q A R X S A S ˙ R ˙ Q S A
13 simpr3 K Lat X A Q A R X S A S ˙ R ˙ Q S ˙ R ˙ Q
14 1 2 3 4 elpaddri K Lat X A Q A R X Q Q S A S ˙ R ˙ Q S X + ˙ Q
15 5 6 8 9 11 12 13 14 syl322anc K Lat X A Q A R X S A S ˙ R ˙ Q S X + ˙ Q