Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
|
2 |
|
paddfval.j |
|
3 |
|
paddfval.a |
|
4 |
|
paddfval.p |
|
5 |
1 2 3 4
|
elpadd |
|
6 |
5
|
adantr |
|
7 |
|
simpl2 |
|
8 |
7
|
sseld |
|
9 |
|
simpll1 |
|
10 |
|
ssel2 |
|
11 |
10
|
3ad2antl2 |
|
12 |
11
|
adantr |
|
13 |
|
eqid |
|
14 |
13 3
|
atbase |
|
15 |
12 14
|
syl |
|
16 |
|
simpl3 |
|
17 |
16
|
sselda |
|
18 |
13 3
|
atbase |
|
19 |
17 18
|
syl |
|
20 |
13 1 2
|
latlej1 |
|
21 |
9 15 19 20
|
syl3anc |
|
22 |
21
|
reximdva0 |
|
23 |
22
|
exp31 |
|
24 |
23
|
com23 |
|
25 |
24
|
imp |
|
26 |
25
|
ancld |
|
27 |
|
oveq1 |
|
28 |
27
|
breq2d |
|
29 |
28
|
rexbidv |
|
30 |
29
|
rspcev |
|
31 |
26 30
|
syl6 |
|
32 |
31
|
adantrl |
|
33 |
8 32
|
jcad |
|
34 |
|
simpl3 |
|
35 |
34
|
sseld |
|
36 |
|
simpll1 |
|
37 |
|
ssel2 |
|
38 |
37
|
3ad2antl2 |
|
39 |
38
|
adantr |
|
40 |
13 3
|
atbase |
|
41 |
39 40
|
syl |
|
42 |
|
simpl3 |
|
43 |
42
|
sselda |
|
44 |
43 14
|
syl |
|
45 |
13 1 2
|
latlej2 |
|
46 |
36 41 44 45
|
syl3anc |
|
47 |
46
|
ex |
|
48 |
47
|
ancld |
|
49 |
|
oveq2 |
|
50 |
49
|
breq2d |
|
51 |
50
|
rspcev |
|
52 |
48 51
|
syl6 |
|
53 |
52
|
impancom |
|
54 |
53
|
ancld |
|
55 |
54
|
eximdv |
|
56 |
|
n0 |
|
57 |
|
df-rex |
|
58 |
55 56 57
|
3imtr4g |
|
59 |
58
|
impancom |
|
60 |
59
|
adantrr |
|
61 |
35 60
|
jcad |
|
62 |
33 61
|
jaod |
|
63 |
|
pm4.72 |
|
64 |
62 63
|
sylib |
|
65 |
6 64
|
bitr4d |
|