Metamath Proof Explorer


Theorem elpclN

Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a A = Atoms K
pclfval.s S = PSubSp K
pclfval.c U = PCl K
elpcl.q Q V
Assertion elpclN K V X A Q U X y S X y Q y

Proof

Step Hyp Ref Expression
1 pclfval.a A = Atoms K
2 pclfval.s S = PSubSp K
3 pclfval.c U = PCl K
4 elpcl.q Q V
5 1 2 3 pclvalN K V X A U X = y S | X y
6 5 eleq2d K V X A Q U X Q y S | X y
7 4 elintrab Q y S | X y y S X y Q y
8 6 7 bitrdi K V X A Q U X y S X y Q y