Metamath Proof Explorer


Theorem elpell14qr

Description: Membership in the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion elpell14qr DAPell14QRDAz0wA=z+Dwz2Dw2=1

Proof

Step Hyp Ref Expression
1 pell14qrval DPell14QRD=a|z0wa=z+Dwz2Dw2=1
2 1 eleq2d DAPell14QRDAa|z0wa=z+Dwz2Dw2=1
3 eqeq1 a=Aa=z+DwA=z+Dw
4 3 anbi1d a=Aa=z+Dwz2Dw2=1A=z+Dwz2Dw2=1
5 4 2rexbidv a=Az0wa=z+Dwz2Dw2=1z0wA=z+Dwz2Dw2=1
6 5 elrab Aa|z0wa=z+Dwz2Dw2=1Az0wA=z+Dwz2Dw2=1
7 2 6 bitrdi DAPell14QRDAz0wA=z+Dwz2Dw2=1