Metamath Proof Explorer


Theorem elply2

Description: The coefficient function can be assumed to have zeroes outside 0 ... n . (Contributed by Mario Carneiro, 20-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion elply2 F Poly S S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k

Proof

Step Hyp Ref Expression
1 elply F Poly S S n 0 f S 0 0 F = z k = 0 n f k z k
2 simpr S n 0 f S 0 0 f S 0 0
3 simpll S n 0 f S 0 0 S
4 cnex V
5 ssexg S V S V
6 3 4 5 sylancl S n 0 f S 0 0 S V
7 snex 0 V
8 unexg S V 0 V S 0 V
9 6 7 8 sylancl S n 0 f S 0 0 S 0 V
10 nn0ex 0 V
11 elmapg S 0 V 0 V f S 0 0 f : 0 S 0
12 9 10 11 sylancl S n 0 f S 0 0 f S 0 0 f : 0 S 0
13 2 12 mpbid S n 0 f S 0 0 f : 0 S 0
14 13 ffvelrnda S n 0 f S 0 0 x 0 f x S 0
15 ssun2 0 S 0
16 c0ex 0 V
17 16 snss 0 S 0 0 S 0
18 15 17 mpbir 0 S 0
19 ifcl f x S 0 0 S 0 if x 0 n f x 0 S 0
20 14 18 19 sylancl S n 0 f S 0 0 x 0 if x 0 n f x 0 S 0
21 20 fmpttd S n 0 f S 0 0 x 0 if x 0 n f x 0 : 0 S 0
22 elmapg S 0 V 0 V x 0 if x 0 n f x 0 S 0 0 x 0 if x 0 n f x 0 : 0 S 0
23 9 10 22 sylancl S n 0 f S 0 0 x 0 if x 0 n f x 0 S 0 0 x 0 if x 0 n f x 0 : 0 S 0
24 21 23 mpbird S n 0 f S 0 0 x 0 if x 0 n f x 0 S 0 0
25 eleq1w x = k x 0 n k 0 n
26 fveq2 x = k f x = f k
27 25 26 ifbieq1d x = k if x 0 n f x 0 = if k 0 n f k 0
28 eqid x 0 if x 0 n f x 0 = x 0 if x 0 n f x 0
29 fvex f k V
30 29 16 ifex if k 0 n f k 0 V
31 27 28 30 fvmpt k 0 x 0 if x 0 n f x 0 k = if k 0 n f k 0
32 31 ad2antll S n 0 f S 0 0 k 0 x 0 if x 0 n f x 0 k = if k 0 n f k 0
33 iffalse ¬ k 0 n if k 0 n f k 0 = 0
34 33 eqeq2d ¬ k 0 n x 0 if x 0 n f x 0 k = if k 0 n f k 0 x 0 if x 0 n f x 0 k = 0
35 32 34 syl5ibcom S n 0 f S 0 0 k 0 ¬ k 0 n x 0 if x 0 n f x 0 k = 0
36 35 necon1ad S n 0 f S 0 0 k 0 x 0 if x 0 n f x 0 k 0 k 0 n
37 elfzle2 k 0 n k n
38 36 37 syl6 S n 0 f S 0 0 k 0 x 0 if x 0 n f x 0 k 0 k n
39 38 anassrs S n 0 f S 0 0 k 0 x 0 if x 0 n f x 0 k 0 k n
40 39 ralrimiva S n 0 f S 0 0 k 0 x 0 if x 0 n f x 0 k 0 k n
41 simplr S n 0 f S 0 0 n 0
42 0cnd S n 0 f S 0 0 0
43 42 snssd S n 0 f S 0 0 0
44 3 43 unssd S n 0 f S 0 0 S 0
45 21 44 fssd S n 0 f S 0 0 x 0 if x 0 n f x 0 : 0
46 plyco0 n 0 x 0 if x 0 n f x 0 : 0 x 0 if x 0 n f x 0 n + 1 = 0 k 0 x 0 if x 0 n f x 0 k 0 k n
47 41 45 46 syl2anc S n 0 f S 0 0 x 0 if x 0 n f x 0 n + 1 = 0 k 0 x 0 if x 0 n f x 0 k 0 k n
48 40 47 mpbird S n 0 f S 0 0 x 0 if x 0 n f x 0 n + 1 = 0
49 eqidd S n 0 f S 0 0 z k = 0 n f k z k = z k = 0 n f k z k
50 imaeq1 a = x 0 if x 0 n f x 0 a n + 1 = x 0 if x 0 n f x 0 n + 1
51 50 eqeq1d a = x 0 if x 0 n f x 0 a n + 1 = 0 x 0 if x 0 n f x 0 n + 1 = 0
52 fveq1 a = x 0 if x 0 n f x 0 a k = x 0 if x 0 n f x 0 k
53 elfznn0 k 0 n k 0
54 53 31 syl k 0 n x 0 if x 0 n f x 0 k = if k 0 n f k 0
55 iftrue k 0 n if k 0 n f k 0 = f k
56 54 55 eqtrd k 0 n x 0 if x 0 n f x 0 k = f k
57 52 56 sylan9eq a = x 0 if x 0 n f x 0 k 0 n a k = f k
58 57 oveq1d a = x 0 if x 0 n f x 0 k 0 n a k z k = f k z k
59 58 sumeq2dv a = x 0 if x 0 n f x 0 k = 0 n a k z k = k = 0 n f k z k
60 59 mpteq2dv a = x 0 if x 0 n f x 0 z k = 0 n a k z k = z k = 0 n f k z k
61 60 eqeq2d a = x 0 if x 0 n f x 0 z k = 0 n f k z k = z k = 0 n a k z k z k = 0 n f k z k = z k = 0 n f k z k
62 51 61 anbi12d a = x 0 if x 0 n f x 0 a n + 1 = 0 z k = 0 n f k z k = z k = 0 n a k z k x 0 if x 0 n f x 0 n + 1 = 0 z k = 0 n f k z k = z k = 0 n f k z k
63 62 rspcev x 0 if x 0 n f x 0 S 0 0 x 0 if x 0 n f x 0 n + 1 = 0 z k = 0 n f k z k = z k = 0 n f k z k a S 0 0 a n + 1 = 0 z k = 0 n f k z k = z k = 0 n a k z k
64 24 48 49 63 syl12anc S n 0 f S 0 0 a S 0 0 a n + 1 = 0 z k = 0 n f k z k = z k = 0 n a k z k
65 eqeq1 F = z k = 0 n f k z k F = z k = 0 n a k z k z k = 0 n f k z k = z k = 0 n a k z k
66 65 anbi2d F = z k = 0 n f k z k a n + 1 = 0 F = z k = 0 n a k z k a n + 1 = 0 z k = 0 n f k z k = z k = 0 n a k z k
67 66 rexbidv F = z k = 0 n f k z k a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a S 0 0 a n + 1 = 0 z k = 0 n f k z k = z k = 0 n a k z k
68 64 67 syl5ibrcom S n 0 f S 0 0 F = z k = 0 n f k z k a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k
69 68 rexlimdva S n 0 f S 0 0 F = z k = 0 n f k z k a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k
70 69 reximdva S n 0 f S 0 0 F = z k = 0 n f k z k n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k
71 70 imdistani S n 0 f S 0 0 F = z k = 0 n f k z k S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k
72 1 71 sylbi F Poly S S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k
73 simpr a n + 1 = 0 F = z k = 0 n a k z k F = z k = 0 n a k z k
74 73 reximi a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k a S 0 0 F = z k = 0 n a k z k
75 74 reximi n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k n 0 a S 0 0 F = z k = 0 n a k z k
76 75 anim2i S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k S n 0 a S 0 0 F = z k = 0 n a k z k
77 elply F Poly S S n 0 a S 0 0 F = z k = 0 n a k z k
78 76 77 sylibr S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k F Poly S
79 72 78 impbii F Poly S S n 0 a S 0 0 a n + 1 = 0 F = z k = 0 n a k z k