| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elplyd.1 |  | 
						
							| 2 |  | elplyd.2 |  | 
						
							| 3 |  | elplyd.3 |  | 
						
							| 4 |  | fveq2 |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 | 4 5 | oveq12d |  | 
						
							| 7 |  | nffvmpt1 |  | 
						
							| 8 |  | nfcv |  | 
						
							| 9 |  | nfcv |  | 
						
							| 10 | 7 8 9 | nfov |  | 
						
							| 11 |  | nfcv |  | 
						
							| 12 | 6 10 11 | cbvsum |  | 
						
							| 13 |  | elfznn0 |  | 
						
							| 14 |  | iftrue |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 15 3 | eqeltrd |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | fvmpt2 |  | 
						
							| 19 | 13 16 18 | syl2an2 |  | 
						
							| 20 | 19 15 | eqtrd |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 | 21 | sumeq2dv |  | 
						
							| 23 | 12 22 | eqtrid |  | 
						
							| 24 | 23 | mpteq2dv |  | 
						
							| 25 |  | 0cnd |  | 
						
							| 26 | 25 | snssd |  | 
						
							| 27 | 1 26 | unssd |  | 
						
							| 28 |  | elun1 |  | 
						
							| 29 | 3 28 | syl |  | 
						
							| 30 | 29 | adantlr |  | 
						
							| 31 |  | ssun2 |  | 
						
							| 32 |  | c0ex |  | 
						
							| 33 | 32 | snss |  | 
						
							| 34 | 31 33 | mpbir |  | 
						
							| 35 | 34 | a1i |  | 
						
							| 36 | 30 35 | ifclda |  | 
						
							| 37 | 36 | fmpttd |  | 
						
							| 38 |  | elplyr |  | 
						
							| 39 | 27 2 37 38 | syl3anc |  | 
						
							| 40 | 24 39 | eqeltrrd |  | 
						
							| 41 |  | plyun0 |  | 
						
							| 42 | 40 41 | eleqtrdi |  |