Metamath Proof Explorer


Theorem elpmapat

Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapat.a A = Atoms K
pmapat.m M = pmap K
Assertion elpmapat K HL P A X M P X = P

Proof

Step Hyp Ref Expression
1 pmapat.a A = Atoms K
2 pmapat.m M = pmap K
3 1 2 pmapat K HL P A M P = P
4 3 eleq2d K HL P A X M P X P
5 elsn2g P A X P X = P
6 5 adantl K HL P A X P X = P
7 4 6 bitrd K HL P A X M P X = P