Metamath Proof Explorer


Theorem elpmg

Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Assertion elpmg A V B W C A 𝑝𝑚 B Fun C C B × A

Proof

Step Hyp Ref Expression
1 pmvalg A V B W A 𝑝𝑚 B = g 𝒫 B × A | Fun g
2 1 eleq2d A V B W C A 𝑝𝑚 B C g 𝒫 B × A | Fun g
3 funeq g = C Fun g Fun C
4 3 elrab C g 𝒫 B × A | Fun g C 𝒫 B × A Fun C
5 2 4 bitrdi A V B W C A 𝑝𝑚 B C 𝒫 B × A Fun C
6 5 biancomd A V B W C A 𝑝𝑚 B Fun C C 𝒫 B × A
7 elex C 𝒫 B × A C V
8 7 a1i A V B W C 𝒫 B × A C V
9 xpexg B W A V B × A V
10 9 ancoms A V B W B × A V
11 ssexg C B × A B × A V C V
12 11 expcom B × A V C B × A C V
13 10 12 syl A V B W C B × A C V
14 elpwg C V C 𝒫 B × A C B × A
15 14 a1i A V B W C V C 𝒫 B × A C B × A
16 8 13 15 pm5.21ndd A V B W C 𝒫 B × A C B × A
17 16 anbi2d A V B W Fun C C 𝒫 B × A Fun C C B × A
18 6 17 bitrd A V B W C A 𝑝𝑚 B Fun C C B × A