Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The mapping operation
elpmg
Next ⟩
elpm2g
Metamath Proof Explorer
Ascii
Unicode
Theorem
elpmg
Description:
The predicate "is a partial function".
(Contributed by
Mario Carneiro
, 14-Nov-2013)
Ref
Expression
Assertion
elpmg
⊢
A
∈
V
∧
B
∈
W
→
C
∈
A
↑
𝑝𝑚
B
↔
Fun
⁡
C
∧
C
⊆
B
×
A
Proof
Step
Hyp
Ref
Expression
1
pmvalg
⊢
A
∈
V
∧
B
∈
W
→
A
↑
𝑝𝑚
B
=
g
∈
𝒫
B
×
A
|
Fun
⁡
g
2
1
eleq2d
⊢
A
∈
V
∧
B
∈
W
→
C
∈
A
↑
𝑝𝑚
B
↔
C
∈
g
∈
𝒫
B
×
A
|
Fun
⁡
g
3
funeq
⊢
g
=
C
→
Fun
⁡
g
↔
Fun
⁡
C
4
3
elrab
⊢
C
∈
g
∈
𝒫
B
×
A
|
Fun
⁡
g
↔
C
∈
𝒫
B
×
A
∧
Fun
⁡
C
5
2
4
bitrdi
⊢
A
∈
V
∧
B
∈
W
→
C
∈
A
↑
𝑝𝑚
B
↔
C
∈
𝒫
B
×
A
∧
Fun
⁡
C
6
5
biancomd
⊢
A
∈
V
∧
B
∈
W
→
C
∈
A
↑
𝑝𝑚
B
↔
Fun
⁡
C
∧
C
∈
𝒫
B
×
A
7
elex
⊢
C
∈
𝒫
B
×
A
→
C
∈
V
8
7
a1i
⊢
A
∈
V
∧
B
∈
W
→
C
∈
𝒫
B
×
A
→
C
∈
V
9
xpexg
⊢
B
∈
W
∧
A
∈
V
→
B
×
A
∈
V
10
9
ancoms
⊢
A
∈
V
∧
B
∈
W
→
B
×
A
∈
V
11
ssexg
⊢
C
⊆
B
×
A
∧
B
×
A
∈
V
→
C
∈
V
12
11
expcom
⊢
B
×
A
∈
V
→
C
⊆
B
×
A
→
C
∈
V
13
10
12
syl
⊢
A
∈
V
∧
B
∈
W
→
C
⊆
B
×
A
→
C
∈
V
14
elpwg
⊢
C
∈
V
→
C
∈
𝒫
B
×
A
↔
C
⊆
B
×
A
15
14
a1i
⊢
A
∈
V
∧
B
∈
W
→
C
∈
V
→
C
∈
𝒫
B
×
A
↔
C
⊆
B
×
A
16
8
13
15
pm5.21ndd
⊢
A
∈
V
∧
B
∈
W
→
C
∈
𝒫
B
×
A
↔
C
⊆
B
×
A
17
16
anbi2d
⊢
A
∈
V
∧
B
∈
W
→
Fun
⁡
C
∧
C
∈
𝒫
B
×
A
↔
Fun
⁡
C
∧
C
⊆
B
×
A
18
6
17
bitrd
⊢
A
∈
V
∧
B
∈
W
→
C
∈
A
↑
𝑝𝑚
B
↔
Fun
⁡
C
∧
C
⊆
B
×
A