Metamath Proof Explorer


Theorem elpmi

Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015)

Ref Expression
Assertion elpmi F A 𝑝𝑚 B F : dom F A dom F B

Proof

Step Hyp Ref Expression
1 n0i F A 𝑝𝑚 B ¬ A 𝑝𝑚 B =
2 fnpm 𝑝𝑚 Fn V × V
3 2 fndmi dom 𝑝𝑚 = V × V
4 3 ndmov ¬ A V B V A 𝑝𝑚 B =
5 1 4 nsyl2 F A 𝑝𝑚 B A V B V
6 elpm2g A V B V F A 𝑝𝑚 B F : dom F A dom F B
7 5 6 syl F A 𝑝𝑚 B F A 𝑝𝑚 B F : dom F A dom F B
8 7 ibi F A 𝑝𝑚 B F : dom F A dom F B