Metamath Proof Explorer


Theorem elprchashprn2

Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017)

Ref Expression
Assertion elprchashprn2 ¬ M V ¬ M N = 2

Proof

Step Hyp Ref Expression
1 prprc1 ¬ M V M N = N
2 hashsng N V N = 1
3 fveq2 M N = N M N = N
4 3 eqcomd M N = N N = M N
5 4 eqeq1d M N = N N = 1 M N = 1
6 5 biimpa M N = N N = 1 M N = 1
7 id M N = 1 M N = 1
8 1ne2 1 2
9 8 a1i M N = 1 1 2
10 7 9 eqnetrd M N = 1 M N 2
11 10 neneqd M N = 1 ¬ M N = 2
12 6 11 syl M N = N N = 1 ¬ M N = 2
13 12 expcom N = 1 M N = N ¬ M N = 2
14 2 13 syl N V M N = N ¬ M N = 2
15 snprc ¬ N V N =
16 eqeq2 N = M N = N M N =
17 16 biimpa N = M N = N M N =
18 hash0 = 0
19 fveq2 M N = M N =
20 19 eqcomd M N = = M N
21 20 eqeq1d M N = = 0 M N = 0
22 21 biimpa M N = = 0 M N = 0
23 id M N = 0 M N = 0
24 0ne2 0 2
25 24 a1i M N = 0 0 2
26 23 25 eqnetrd M N = 0 M N 2
27 26 neneqd M N = 0 ¬ M N = 2
28 22 27 syl M N = = 0 ¬ M N = 2
29 17 18 28 sylancl N = M N = N ¬ M N = 2
30 29 ex N = M N = N ¬ M N = 2
31 15 30 sylbi ¬ N V M N = N ¬ M N = 2
32 14 31 pm2.61i M N = N ¬ M N = 2
33 1 32 syl ¬ M V ¬ M N = 2