Metamath Proof Explorer


Theorem elpred

Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Hypothesis elpred.1 Y V
Assertion elpred X D Y Pred R A X Y A Y R X

Proof

Step Hyp Ref Expression
1 elpred.1 Y V
2 elpredgg X D Y V Y Pred R A X Y A Y R X
3 1 2 mpan2 X D Y Pred R A X Y A Y R X