Metamath Proof Explorer


Theorem elpredgg

Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) Generalize to closed form. (Revised by BJ, 16-Oct-2024)

Ref Expression
Assertion elpredgg X V Y W Y Pred R A X Y A Y R X

Proof

Step Hyp Ref Expression
1 df-pred Pred R A X = A R -1 X
2 1 elin2 Y Pred R A X Y A Y R -1 X
3 elinisegg X V Y W Y R -1 X Y R X
4 3 anbi2d X V Y W Y A Y R -1 X Y A Y R X
5 2 4 syl5bb X V Y W Y Pred R A X Y A Y R X