Metamath Proof Explorer


Theorem elpredimg

Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 13-Apr-2011) (Revised by NM, 5-Apr-2016) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Assertion elpredimg X V Y Pred R A X Y R X

Proof

Step Hyp Ref Expression
1 elpredgg X V Y Pred R A X Y Pred R A X Y A Y R X
2 simpr Y A Y R X Y R X
3 1 2 biimtrdi X V Y Pred R A X Y Pred R A X Y R X
4 3 syldbl2 X V Y Pred R A X Y R X