Metamath Proof Explorer


Theorem elpreima

Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion elpreima F Fn A B F -1 C B A F B C

Proof

Step Hyp Ref Expression
1 cnvimass F -1 C dom F
2 1 sseli B F -1 C B dom F
3 fndm F Fn A dom F = A
4 3 eleq2d F Fn A B dom F B A
5 2 4 syl5ib F Fn A B F -1 C B A
6 fnfun F Fn A Fun F
7 fvimacnvi Fun F B F -1 C F B C
8 6 7 sylan F Fn A B F -1 C F B C
9 8 ex F Fn A B F -1 C F B C
10 5 9 jcad F Fn A B F -1 C B A F B C
11 fvimacnv Fun F B dom F F B C B F -1 C
12 11 funfni F Fn A B A F B C B F -1 C
13 12 biimpd F Fn A B A F B C B F -1 C
14 13 expimpd F Fn A B A F B C B F -1 C
15 10 14 impbid F Fn A B F -1 C B A F B C