Metamath Proof Explorer


Theorem elpreimad

Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elpreimad.f φ F Fn A
elpreimad.b φ B A
elpreimad.c φ F B C
Assertion elpreimad φ B F -1 C

Proof

Step Hyp Ref Expression
1 elpreimad.f φ F Fn A
2 elpreimad.b φ B A
3 elpreimad.c φ F B C
4 elpreima F Fn A B F -1 C B A F B C
5 1 4 syl φ B F -1 C B A F B C
6 2 3 5 mpbir2and φ B F -1 C