Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Unordered pairs
elpreq
Next ⟩
nelpr
Metamath Proof Explorer
Ascii
Unicode
Theorem
elpreq
Description:
Equality wihin a pair.
(Contributed by
Thierry Arnoux
, 23-Aug-2017)
Ref
Expression
Hypotheses
elpreq.1
⊢
φ
→
X
∈
A
B
elpreq.2
⊢
φ
→
Y
∈
A
B
elpreq.3
⊢
φ
→
X
=
A
↔
Y
=
A
Assertion
elpreq
⊢
φ
→
X
=
Y
Proof
Step
Hyp
Ref
Expression
1
elpreq.1
⊢
φ
→
X
∈
A
B
2
elpreq.2
⊢
φ
→
Y
∈
A
B
3
elpreq.3
⊢
φ
→
X
=
A
↔
Y
=
A
4
simpr
⊢
φ
∧
X
=
A
→
X
=
A
5
3
biimpa
⊢
φ
∧
X
=
A
→
Y
=
A
6
4
5
eqtr4d
⊢
φ
∧
X
=
A
→
X
=
Y
7
elpri
⊢
X
∈
A
B
→
X
=
A
∨
X
=
B
8
1
7
syl
⊢
φ
→
X
=
A
∨
X
=
B
9
8
orcanai
⊢
φ
∧
¬
X
=
A
→
X
=
B
10
simpl
⊢
φ
∧
¬
X
=
A
→
φ
11
3
notbid
⊢
φ
→
¬
X
=
A
↔
¬
Y
=
A
12
11
biimpa
⊢
φ
∧
¬
X
=
A
→
¬
Y
=
A
13
elpri
⊢
Y
∈
A
B
→
Y
=
A
∨
Y
=
B
14
pm2.53
⊢
Y
=
A
∨
Y
=
B
→
¬
Y
=
A
→
Y
=
B
15
2
13
14
3syl
⊢
φ
→
¬
Y
=
A
→
Y
=
B
16
10
12
15
sylc
⊢
φ
∧
¬
X
=
A
→
Y
=
B
17
9
16
eqtr4d
⊢
φ
∧
¬
X
=
A
→
X
=
Y
18
6
17
pm2.61dan
⊢
φ
→
X
=
Y