Metamath Proof Explorer


Theorem elpreqpr

Description: Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020)

Ref Expression
Assertion elpreqpr A B C x B C = A x

Proof

Step Hyp Ref Expression
1 elpri A B C A = B A = C
2 elex A B C A V
3 elpreqprlem B V x B C = B x
4 eleq1 A = B A V B V
5 preq1 A = B A x = B x
6 5 eqeq2d A = B B C = A x B C = B x
7 6 exbidv A = B x B C = A x x B C = B x
8 4 7 imbi12d A = B A V x B C = A x B V x B C = B x
9 3 8 mpbiri A = B A V x B C = A x
10 9 imp A = B A V x B C = A x
11 elpreqprlem C V x C B = C x
12 prcom C B = B C
13 12 eqeq1i C B = C x B C = C x
14 13 exbii x C B = C x x B C = C x
15 11 14 sylib C V x B C = C x
16 eleq1 A = C A V C V
17 preq1 A = C A x = C x
18 17 eqeq2d A = C B C = A x B C = C x
19 18 exbidv A = C x B C = A x x B C = C x
20 16 19 imbi12d A = C A V x B C = A x C V x B C = C x
21 15 20 mpbiri A = C A V x B C = A x
22 21 imp A = C A V x B C = A x
23 10 22 jaoian A = B A = C A V x B C = A x
24 1 2 23 syl2anc A B C x B C = A x