Metamath Proof Explorer


Theorem elpreqprlem

Description: Lemma for elpreqpr . (Contributed by Scott Fenton, 7-Dec-2020) (Revised by AV, 9-Dec-2020)

Ref Expression
Assertion elpreqprlem B V x B C = B x

Proof

Step Hyp Ref Expression
1 eqid B C = B C
2 preq2 x = C B x = B C
3 2 eqeq2d x = C B C = B x B C = B C
4 3 spcegv C V B C = B C x B C = B x
5 1 4 mpi C V x B C = B x
6 5 a1d C V B V x B C = B x
7 dfsn2 B = B B
8 preq2 x = B B x = B B
9 8 eqeq2d x = B B = B x B = B B
10 9 spcegv B V B = B B x B = B x
11 7 10 mpi B V x B = B x
12 prprc2 ¬ C V B C = B
13 12 eqeq1d ¬ C V B C = B x B = B x
14 13 exbidv ¬ C V x B C = B x x B = B x
15 11 14 syl5ibr ¬ C V B V x B C = B x
16 6 15 pm2.61i B V x B C = B x