Metamath Proof Explorer


Theorem elpw2g

Description: Membership in a power class. Theorem 86 of Suppes p. 47. (Contributed by NM, 7-Aug-2000)

Ref Expression
Assertion elpw2g B V A 𝒫 B A B

Proof

Step Hyp Ref Expression
1 elpwi A 𝒫 B A B
2 ssexg A B B V A V
3 elpwg A V A 𝒫 B A B
4 3 biimparc A B A V A 𝒫 B
5 2 4 syldan A B B V A 𝒫 B
6 5 expcom B V A B A 𝒫 B
7 1 6 impbid2 B V A 𝒫 B A B