Metamath Proof Explorer


Theorem elpwdifcl

Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypothesis elpwincl.1 φ A 𝒫 C
Assertion elpwdifcl φ A B 𝒫 C

Proof

Step Hyp Ref Expression
1 elpwincl.1 φ A 𝒫 C
2 1 elpwid φ A C
3 2 ssdifssd φ A B C
4 difexg A 𝒫 C A B V
5 elpwg A B V A B 𝒫 C A B C
6 1 4 5 3syl φ A B 𝒫 C A B C
7 3 6 mpbird φ A B 𝒫 C