Metamath Proof Explorer


Theorem elpwdifsn

Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion elpwdifsn S W S V A S S 𝒫 V A

Proof

Step Hyp Ref Expression
1 simp2 S W S V A S S V
2 1 sselda S W S V A S x S x V
3 df-nel A S ¬ A S
4 3 biimpi A S ¬ A S
5 4 3ad2ant3 S W S V A S ¬ A S
6 5 anim1ci S W S V A S x S x S ¬ A S
7 nelne2 x S ¬ A S x A
8 6 7 syl S W S V A S x S x A
9 eldifsn x V A x V x A
10 2 8 9 sylanbrc S W S V A S x S x V A
11 10 ex S W S V A S x S x V A
12 11 ssrdv S W S V A S S V A
13 elpwg S W S 𝒫 V A S V A
14 13 3ad2ant1 S W S V A S S 𝒫 V A S V A
15 12 14 mpbird S W S V A S S 𝒫 V A