Metamath Proof Explorer


Theorem elpwincl1

Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypothesis elpwincl.1 φ A 𝒫 C
Assertion elpwincl1 φ A B 𝒫 C

Proof

Step Hyp Ref Expression
1 elpwincl.1 φ A 𝒫 C
2 elpwi A 𝒫 C A C
3 ssinss1 A C A B C
4 1 2 3 3syl φ A B C
5 inex1g A 𝒫 C A B V
6 elpwg A B V A B 𝒫 C A B C
7 1 5 6 3syl φ A B 𝒫 C A B C
8 4 7 mpbird φ A B 𝒫 C